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Abstract 

We study magnetically charged classical solutions of a spontaneously broken gauge 

theory interacting with gravity. We show that nonsingular monopole solutions exist only if 

the Higgs field vacuum expectation value v is less than or equal to a critical value v,,, which 

is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, 

with the region outside the horizon described by the critical Reissner-Nordstrom solution. 

For ‘v < vcr, we find additional solutions which are singular at T = 0, but which have 

this singularity hidden within a horizon. These have nontriviaI matter fields outside the 

horizon, and may be interpreted as small black holes lying within a magnetic monopole. 

The nature of these solutions as a function of v and of the total mass M and their relation 

to the Reissner-Nordstrom solutions is discussed. 
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1. Introduction 

Some spontaneously broken gauge theories contain magnetic monopoles which 

have the remarkable property that, despite being particles in a quantum theory, 

they are described by a classical field configuration. This is possible because in the 

limit of weak gauge coupling e their Compton wavelength - e/v is much less than 

the radius - l/(ev) of the classical monopole solution. Another curious property 

emerges as the Higgs vacuum expectation value v approaches the Planck mass Mp. 

The Schwarzschild radius 2MG - v /(eMi) becomes comparable to the monopole 

radius, suggesting that for v 2 Mp the monopole should be a black hole! (This 

result can be evaded in theories containing dilatons!“) If e < 1, this occurs in a 

regime where the energy density is much less than Mp, justifying the neglect of 

quantum gravity effects. By studying the classical solution, then, one can gain 

insight into how the particle passes over into a black hole. 

In this paper we undertake such an investigation. We consider an SIT(2) gauge 

theory in which a triplet Higgs field 4 breaks the symmetry down to U(1);’ this 

theory gives rise to ‘t Hooft-Polyakov monopoles with magnetic charge QM = l/e. 

We find that when v = (4) is sufficiently large, the only magnetically charged 

solutions are the Reissner-Nordstrom black holes. These are essentially Abelian, 

in that the only nontrivial matter field is the Coulomb magnetic field lying in 

the unbroken U(1) subgroup. They have a singularity at r = 0 whose strength 

is determined by the mass M. In order that this singularity be hidden within a 

horizon, M must be greater than Merit = 
J-- 

4rQkMp. For smaller values of u, 

however, we find that a rather different type of black hole solutions is also possible. 

For these the horizon lies within the core of the monopole, so that the non-Abel&i 

structure is quite evident in the region outside the horizon. In a sense, these 

solutions can be viewed as black holes lying inside monopoles. The mass of these 

objects can take any value down to the mass of the nonsingular monopole. We 

find that there is also an upper limit on their mass. In some cases this limit is 

* There has been wxne study”’ of black hole like solutions in the theory without Biggs fields. 
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greater than the critical Reissner-Nordstrom mass, so that there are two different 

black hole solutions with the same values for the mass and magnetic charge. 

Classical solutions can also play another role in relation to semiclassical gravity. 

Black holes can reduce their mass by Hawking radiation. By this mechanism 

initially macroscopic black holes can shrink to the microscopic size characteristic 

of the classical solutions. (In the weak coupling limit this scale is much greater 

than the Planck length, so gravity can still be treated semiclassically.) Once this 

happens, the classical solutions provide possible pathways for the further evolution 

of the black hole by the Hawking process. An understanding of the nature of these 

solutions as a function of coupling constants and other parameters can thus lead 

to further insight into the late stages of magnetically charged black holes. 

In Sec. 2 we review the essential features of the theory and obtain the field 

equations which must be obeyed by static spherically symmetric solutions. Much 

of this reproduces, although with a somewhat different notation, the results of van 

Nieuwenhuizen, Wilkinson, and PerryI”. In Sec. 3 we study nonsingular monopole 

solutions and their behavior as v approaches Mp. In Sec. 4 we extend our con- 

siderations to include solutions with singularities inside the horizon which are es- 

sentially black holes inside the monopole. Section 5 contains some concluding 

remarks. There are two appendices. In the first, we reconcile the absence of non- 

singular solutions for large v with the existence of a positive definite functional 

whose minima are solutions of the field equations. In the second, we derive a num- 

ber of inequalities which restrict the properties of the various types of black hole 

solutions. 
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2. General Formalism 

The theory is governed by the action 

where 

L matter = -;(Fg + $@--)2 - ;((dy - .y 

with Latin indices a, b, . referring to the internal SU(2) indices, 

(WY = a,,&’ - eea6&hC 

(2.1) 

(2.2) 

(2.3) 

and 

F;” = &A; - &A; - ecab,Af,A; (2.4) 

A constant term has been included in the scalar field potential so that the energy 

vanishes in the symmetry-breaking vacuum. The elementary excitations about this 

vacuum are a massless photon, two charged vectors with mass rn~ = ev, and a 

neutral massive Higgs scalar with mass ma = 267~. 

In this paper we consider only static spherically symmetric solutions. For these, 

the metric may be written in the form 

ds2 = B(T)& - A(r - r2(oY2 + sin2Sd~2) (2.5) 

The normalization oft is fixed by requiring that B(co) = 1, while the requirement 

that space be asymptotically flat imposes the condition A(co) = 1. For later 

convenience we define M(r) by 

A(,-) = 1 - 2Gycr)] -I 

For the matter fields we adopt the standard spherically symmetric an&z COT- 

responding to magnetic charge QM = l/e. In flat space this ansatz is usually 
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written in terms of Cartesian coordinates as 

4” = vPh(r) (2.7) 

A; = E;& 
1 - U(f) 

er (2.8) 

Ar, = 0 (2.9) 

The extension to curved space[” . IS most easily done by first transforming to spher- 

ical coordinates.* Once this has been done, the matter part of the action can be 

written as 

s matter = -47r J x(; h, + u(u, h)] 

where 

(2.11) 

u = (72 - 1)2 + U2h%J2 
2e2r4 

7 + gJ4(h2 - I)2 (2.12) 

(Primes denote differentiation with respect to r.) 

U(u, h) may be viewed as a position-dependent field potential. For later refer- 

ence, we enumerate here its stationary points: 

a) u = fl, h = 0: This is a local minimum of U if r < l/(&u), and is a 

saddle point otherwise. 

b) u = 0, h = 0: This is always a local maximum of U. 

I An invariant way to write the ansata for the vector potential is 

A;dz’ = f L”gp.drY 

where La’-& are the three Killing vectors corresponding to the rotational symmetry and f 
is a function invariant under the action of these Killing vectors. For the choice of spherical 
coordinates in Eq. (2.54, this is the aarne as Eqs. (2.8) and (2.9). 
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c) u = C(T), h = A(P), where 

C(T) = 
/ 

A( 1 - eVv2) 
x - e2 

h(r) = 
\i 

X7-W - 1 
(A _ e2)T2y2 (2.14) 

These are both real only when +V lies between l//e/ and l/A. Within this range 

of r, this point is the global minimum of U if X > e2, and a saddle point otherwise. 

When X = e2, C and h are undefined, and this stationary point is replaced by a 

degenerate set of minima, with h2 + u2 = 1, which exist only when lelur =. 1. 

d) u = 0, h = fl: This is a local minimum of U if r > l/(ev), but only a 

saddle point otherwise. 

The gravitational field equations reduce to two independent equations, which 

may be written as 

(2.15) 

and 

M’ = 4xr2 =41rr2(K +U) - 8?rGrKM (2.16) 

The equations for the matter fields are 

(2.17) 

and 

1 au =-- 
v2 tlh 

= F + 2Xh(h2 - 1)~’ 

(2.18) 

By resealing of distances in these equations, it can be shown that that U, h and 
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eM/v are given by functions of cur whose forms depend only on X/e2 and Gv2 = 

(~/MP)'. 

By integration of (2.16) we see that the mass can be written as 

03 

M=M(co) = 4n J drr2eCP(+)(K + U) + eCP(‘)M(0) (2.19) 

0 

where 
00 

P(r) = dr 8nGrK J 
I 

If M(0) 2 0, the mass defined by (2.19) satisfies the inequality[” 

(2.20) 

m 
M > e-‘(O) 47r [J drr’(K + U) + M(0) 1 2 % e-p(o) (2.21) 

0 

which follows from the positivity of K and the Bogomol’nyi bound!’ For a nonsin- 

gular solution, M(0) = 0. A solution u, h is then a minimum of M, viewed as a 

functional of u and h, and so we have 

m 

M(u, h) I M(uo, ho) I 4~ J drr’(K + U)L,,ho 5 Mpot (2.22) 

0 

where us and hs are the flat-space solutions and Mf1-t is the flat-space monopole 

mass. This inequality is of course in accord with our intuition that gravity tends 

to reduce the mass. 

Because the function space is noncompact, there is no guarantee that there 

will actually be a configuration which minimizes M. Instead, there could be an 

infinite sequence of configurations of decreasing energy which does not converge on 

a limiting configuration. Indeed, for Gu2 sufficiently large we find that there are 

no nonsingular solutions. In Appendix A we display a sequence of configurations 

for which M approaches, but does not reach, its lower bound for this case. 
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Eq. (2.15) can be used to eliminate B(r) from the remaining field equations, 

leaving one first-order and two second-order equations to be integrated. A solution 

of these is determined by five boundary. conditions. Two are provided by the 

asymptotic conditions U(OO) = 0 and h(m) = 1. The remaining three can be 

obtained by requiring that the solution be nonsingular at the origin, which implies 

that u(0) = 1, h(O) = 0, and M(0) = 0. 

Matters become more complicated if horizons are present, i.e., if l/A(r) has 

zeros. At a horizon rx, the vanishing of l/A gives 

M(ra) = $ 

This, together with Eq. (2.16), implies that 

1’ 1 

0 ;i =T 
- - S?rGrU(u, h), 

(2.23) 

T = i-B (2.24) 

Substitution of this into Eqs. (2.17) and (2.18) gives two conditions 

11’ 
[ 
; - S*GU(u,h) = q=g, 

I 
P = 7-B 

and 

h’ ; -S?rGU(u,h) 
I 

=$$, T = 7-H 

(2.25) 

which must hold if the solution is to be nonsingular. 

Since these additional conditions overdetermine the solution, we do not expect 

there to be any nonsingular solutions containing horizons, except perhaps for spe- 

cial values of X and u. If singularities are allowed at T = 0, then it should be 

possible to obtain otherwise nonsingular solutions with a single horizon, but not 

(for generic values of X and V) with two or more. 
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Finally, note that a solution[” of the field equations is obtained by taking 

constant fields u(r) = 0 and h(r) = 1, with 

(2.27) 

where M is arbitrary. This yields the Reissner-Nordstrom metric 

B(r) = A(r)-’ = 1 - F + 2 

which has a singularity at r = 0. There are horizons at 

(2.29) 

provided that M is greater than the critical value Merit = v’m. 

3. Nonsingular Monopoles 

For values of v much smaller than the Planck mass, gravitational effects on 

the monopole are small and the nonsingular monopole solutions should be similar 

to their flat-space counterparts. On the other hand, as we have argued above, if 

v > Mp, the Schwarzschild radius would be greater than the size of the monopole, 

so the monopole must be a black hole. In this section we examine the transition 

between these two regimes. 

Near the origin, a nonsingular solution must behave as 

U(T) = 1 - C”2 + . . ’ (3.1) 

h(r) = Chr + (3.2) 

M(r) = ; (9 (3.3) 

where C, and Ch are constants which must be chosen so that u and h approach 

the correct values as t + co. In the absence of gravity, the possibility of making 
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such a choice is ensured by the existence of a positive definite energy functional 

whose minimum is a solution of the static field equations. This argument can be 

extended to the case of weak gravity[*’ ( see Eq. (2.19)), although, as discussed in 

Sec. 2 and Appendix A, it fails when v/Mp becomes too great. 

Just as in flat space, the matter fields II and h remain nontrivial inside the 

monopole “core” of radius - l/(ev) and then approach their asymptotic values 

exponentially fast: 

u(r) = O(e--mvr) (3.4) 

h(r) = 1 - G(e-mHr) (3.5) 

It then follows from Eq. (2.16) that 

M(r) = M - g + O(e-“““, e-‘“nr) 

In flat space, the monopole mass M,,,., E Mfrat = (4n/e)f(X/e’), where f ranges 

from 1 to 1.787 as X ranges from 0 to oo?’ As mentioned above, gravitational effects 

cause M to be somewhat smaller; our numerical results indicate that the monopole 

mass can be reduced to about two-thirds of its flat-space value. 

We now turn to the discussion of how a horizon develops as the mass increases. 

From the large and small P behavior of M, it is evident that l/A will have a 

minimum, corresponding to a maximum of M/T, at some intermediate value of r. 

The asymptotic form Eq. (3.6) suggests that this occurs at a value? - 4r/(e2M) N 

l/(ev), with l/A(f) Y 1 - O(Gu’). As v increases, this minimum should become 

deeper, until eventually a critical value zlC, is reached for which l/A(?) = 0 and 

a horizon appears. One would expect this horizon to persist if v were increased 

further, but, as was argued in the previous section, it will not in general be possible 

for a solution with proper asymptotic behavior to be well-behaved at both the 

horizon and at r = 0. We therefore expect that only singular solutions exist when 

IJ > vcr. More specifically, our results for the critical case suggest that in the 
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supercritical case there are only Reissner-Nordstrom solutions with u(r) = 0 and 

h(r) = 1; in the next section we will prove this to be the case if v is sufficiently 

great. 

Let us examine the critical case v = v C, in more detail. To begin, note that 

Eqs. (2.25) and (2.26), together with the fact that l/A is stationary at the horizon, 

imply that u(ra) and h(ra) must correspond to one of the stationary points of 

U(U, h), which were enumerated in Sec. 2 The first two, u = fl, h = 0 and u = 0, 

h = 0, are easily ruled out. For the former, one can show that if l/A and (l/A)’ 

both vanish, then (l/A)” must be negative, in contradiction with the assumption 

that l/A is at a minimum. In the latter case, it is easy to show that all solutions 

of Eq. (2.17) and (2.18) develop singularities as r + PX if (l/A)” > 0. 

We have not been able to completely eliminate the third case, u = G(r), h = 

i(r). There are however several constraints which the parameters must satisfy for 

a solution to exist!’ The condition (l/A)’ = 0 implies 4nG(~’ + h’) = 1 at the 

horizon. With the values of G(r), h(r) f rom Eqs. (2.13) and (2.14), this leads to a 

quadratic equation for r-i. The requirements that vra lie between l/e and l/fi, 

so that ri and k are both real, and that (l/A)” > 0 eliminate one of the solutions 

of the quadratic equation and lead to the conditions 

1+ 
e2 

$ x 2 s*Gv= 2 2, X < e2 

1+ 
e2 

J- x 5 srGv= 5 2, X > e2 

In addition to these requirements, the solution in the region within the horizon 

must be such that 2GM(rrr) = r~; we do not know whether this can be done with 

v in the range specified above. Furthermore, we have not addressed the question 

of whether these solutions are stable; this seems particularly doubtful for the case 

X < e2, where h, fi is not a minimum of U(h,u). 

Finally, we come to the case u = 0, h = 1. This corresponds to a solution in 

which u and h have already reached their asymptotic values at the horizon which, 
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from Eq. (2.24), must occur at 

rg = 

The entire monopole, except for its Coulomb magnetic field, lies within the hori- 

zon. The exterior solution is then of the Reissner-Nordstrom form with the mass 

M equal to the critical value for unit magnetic charge. Since we want it to be 

nonsingular, the interior solution cannot be simply Reissner-Nordstrom. Instead, 

it is similar in form to the solutions for subcritical v at small 7, while near the 

horizon u and 1 - h vanish as powers of ra - T. Two aspects of this solution may 

seem puzzling. First, it may seem unphysical for the entire evolution of the matter 

fields to take place within a finite range of r. However, this becomes more plausible 

when one notes that the physical distance from the origin is 

(3.9) 

Since A diverges as (r - 7~)~’ near the horizon of the critical solution, I(ra) is in 

fact infinite. In a sense, rather than the monopole being compressed to fit within 

the horizon, the horizon has been expanded outward to encompass the monopole. 

Second, the values for the fields and their derivatives at any r > ra do not de- 

termine the solution everywhere, as evidenced by the fact that this solution and 

the Reissner-Nordstrom agree in the exterior region but differ in the interior. This 

is possible because the simultaneous vanishing of l/A and (l/A)’ at the horizon 

prevents one from simply integrating across the horizon and allows nonanalytic 

behavior at r = r-a. 

We have checked these arguments by numerically solving the field equations. 

Starting with the small distance expansions of Eqs. (3.1) and (3.2), we varied the 

constants C, and CJ, until the proper asymptotic behavior was obtained. In all 

cases we found that as v approached z), the solution tended toward one which was 
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purely Reissner-Nordstrom in the exterior region, rather than one for which the 

fields were given by fi and k at the horizon. 

A sample of these results is displayed in Fig. 1, where we show U, h, and 

l/A as functions of r for X/e2 = 1.0 and p = 8aGv’ equal to 0.1, 1.0, 2.0, and 

2.35. The last of these values is as close as we were able to come to the critical 

value pCr = 8xGv$. As p increases, the monopole appears to be pulled inward. 

The minimum of l/A also moves inward, although less so. A contrasting view is 

obtained by plotting these fields as functions of the physical distance I(r). As an 

example, u(r) is plotted in this fashion in Fig. 2; we see that the change in the 

physical size of the monopole is actually rather small. 

We also studied the behavior of pcrr finding it to be a decreasing function of 

X/e2. In particular, for X/e2 equal to 0.1, 1.0, and 10.0, per is 3.7, 2.4, and 1.6, 

respectively. 

4. Black Holes in Monopoles 

It was argued in the previous section that for v > v,, all solutions will have 

singularities. In this section we consider these supercritical solutions as well as 

another class of singular solutions which may be viewed as black holes embedded 

inside monopoles. Let us suppose that M(O) . 1s nonzero and positive, with 2GM(O) 

much smaller than the monopole radius, and that v < Mp, so that the monopole 

would not by itself become a black hole. At small r, the effects of the matter fields 

can be neglected and the metric will be similar to that of a Schwarzschild black 

hole with mass M(0). At larger 7, the gravitational effects will be small and the 

matter fields will resemble those of a flat space monopole. One might object that 

having structure outside the horizon would be forbidden by the no-hair theorems, 

and that the monopole would collapse into a Reissner-Nordstrom black hole. This 

is not so. The behavior of the fields at the outer edges of the monopole core is 

determined largely by the shape of the position-dependent field potential U at that 

radius. The effects on the fields in this region of a small black hole near the center 
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of the monopole would be small, much as the effects of a small black hole at the 

center of a large solid body (e.g., the Earth) would b e neglible at the outer regions 

of the body. To understand how equilibrium is possible at the horizon, note that at 

r = ra the covariant conservation of a diagonal energy-momentum tensor reduces 

to the condition p + pr = 0, where T/‘ E diag( -p,pr,pe,pd). While this cannot 

be achieved in normal fluids, which have positive pressure, it is quite possible in a 

field theory. 

Let us now try to make these arguments more quantitative. We begin by 

recalling the derivation of a no-hair theorem “I for a theory with a single scalar 

field 4. We restrict our consideration to spherically symmetric configurations, so 

the matter field equation can be written as 

(4.1) 

with the metric given by Eq. (2.5). Multiplying both sides by (4 - &), where ~$0 

is a minimum of the V(4), and integrating from the horizon out to infinity gives 

m 

/ 
;cjf2 + (4 - c,ho)g] = 

r2dmQ(~ - 40) I=- 
A (4.2) 

Iii v=,Jf 

The right hand side vanishes, since l/A(r~) = 0, while energetic arguments require 

that +‘(c$ - 4s) fall faster than rw2 at large distances. The first term in the integral 

on the left hand side can never be negative, since A(r) > 0 outside the horizon. 

If 40 is the only minimum of V(4), then the second term in the integrand is also 

non-negative everywhere, and Eq. (4.2) can only be satisfied if 4(r) = 40 for all 

P > rg. Thus a necessary condition for the existence of a nontrivial field outside 

the horizon is that V(d) have more than one minimum. 

As we have seen, the monopole problem, when restricted to spherically sym- 

metric configurations, resembles a theory with two scalar fields and a position- 

dependent field potential. The fields which minimize this potential are different at 
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large and small values of r. If 2GM(O) 1s much less than both l/(ev) and l/(a), 

we would expect the fields at the horizon to be at or near the short distance mini- 

mum, u = 1, h = 0. There would then be nontrivial behavior in the region outside 

the horizon as the fields evolved to the asymptotic values corresponding to the 

large distance minimum. On the other hand, if the horizon is located at large r, 

where u = 0, h = 1 is the only minimum of the potential, the no-hair theorem 

derived above suggests that the fields must lie at their asymptotic value everywhere 

outside the horizon. 

This picture can be made more precise with the aid of certain inequalities which 

ra and the values of the fields must obey, if we make a few plausible assumptions. 

We assume that the fields vary monotonically outside the horizon, so that U’ is 

everywhere negative and h’ is everywhere positive, with u and h always taking 

values between zero and one. At the horizon, we have (l/A)’ 2 0, with equality 

holding only for the critical solutions discussed in the previous section. From 

Eqs. (2.24)(2.26), we then have 

* *2 u (1 -U ) 1 u*h*2e2v2r& (4.3) 

h*u*2 2 h*( 1 - h*2)Xv2& (4.4) 

where U* G u(ra) and h’ s h(ra). Inequalities (4.3) and (4.4) translate into the 

following possibilities. Either u = 0, h = 1 (corresponding to the exterior solution 

being Reissner-Nordstrom) or 

Xv2&(l - V2) 5 2~‘~ 5 1 - h*2e2v2r& (4.5) 

11’2 
l-- < h*2 < 1 - 21*2 

x+2 - - e”+J 

(There is one more possibility, viz. h’ = 0. This can only occur if (l/A)’ = 0, but 

we have already seen that for the critical case h’ = 0 leads to singularities at the 
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horizon.) Since U’ and h2 must lie between zero and one, these inequalities require 

x > e2 (4.7) 

Since rg is given by ZGM(~R), it clearly increases as either M(0) or v is increased. 

Thus if we increase either of these quantities, we will eventually reach a point 

when these inequalities can no longer be satisfied. When this happens, the only 

admissible solution to the inequalities (4.3) and (4.4) is U* = 0, h’ = 1. 

One could summarize these results by drawing a “phase diagram” of the so- 

lutions as a function of M(0) and V. The nonsingular solutions considered in the 

previous section would lie along the M(0) = 0 axis, with v < v=,. Above this axis, 

and to the left of a critical line, would be the black hole solutions we have just 

described. To the right of this line there would be no solutions. The Reissner- 

Nordstrom solutions would not appear on the phase diagram, because for these 

M(0) = -co. diagram, because for these M(0) is infinite. 

Obtaining the precise boundaries in this phase diagram would require that 

we return to the field equations (2.16)(2.18) and look for numerical solutions for 

various values of M(0) and V. However, considerable insight can be gained by the 

analysis of a somewhat simplified model of a monopole. In this model the flat space 

monopole is composed of a core of radius R with uniform energy density, with only 

the Coulomb magnetic field extending outside the core. The energy density is then 

Integrating this to obtain the monopole mass it&,,,, and then minimizing with 
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respect to R, gives 

and 

(4.10) 

with one fourth of the monopole mass lying within the core. These results are in 

qualitative agreement with the exact results if R - l/eu, pa - e2n4, and M,,,,, - 

v/e. 

We now use this model to calculate M(r) and then use the result to determine 

the positions of the horizons. Specifically, in the presence of gravity we define 

p = K/A + CT = M’/(4nr2), and continue to model it by Eq. (4.8), with R and 

Mmon as given above. This gives 

M(O) + Mnonra 
r 4RS ’ 

r<R 

-= 
M(O) + Nmn 

(4.11) 

- WmmR, T > R 
f 47-2 

The behavior of this function depends on the relative magnitudes of M(0) and 

Mm. If M(O) < Wnon/2, M(r)/r d’ g iver es at P = 0, falls to a minimum at 

~1 = (2M(0)/Mno,)1’3R, and then rises to a maximum at 

3RWw, 
p2 = 2 [M(O) + M,,,] 

(4.12) 

with 

M(Tz) e2 - = jjy W(O) + Mno,]2 
T2 

It then decreases monotonically to zero as r + co. The horizons occur at the 
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values of P such that 2GM/r = 1. 0 ne such lies at a position ra < rr such that 

M?lld~ 
4R3 

+ M(0) = g (4.14) 

With small u (and hence small M,,,.,), the peak at 72 is less than 1/(2G), and this 

is the only horizon. As v is increased, with M(0) held fixed, the peak at PZ rises, 

reaching 1/(2G) when 

M m,+M(O)= (4.15) 

M = Mcvit (4.16) 

where M = M(M) and we have introduced MC-it, the critical Reissner-Nordstrom 

mass for unit magnetic charge. This behavior is quite analogous to that we saw 

for the M(0) = 0 case. Just as in that case, non-Reissner-Nordstrom solutions are 

not expected to exist beyond this critical point. 

If instead M(0) > M,,,,,/2, M( T P )/ d ecreases monotonically. Taken at face 

value, our formulas would always imply the existence of a horizon. However, our 

discussion of the no-hair theorem suggests that for a non-trivial solution to exist the 

horizon must lie within the monopole core, in which case it must satisfy Eq. (4.14). 

Requiring that this equation have a solution with PE < R, and using Eq. (4.10), 

we obtain the condition 

M+fmm+ ML 
3Mm.n 

We can now construct the phase diagram of solutions. This is shown in Fig. 3, 

where we have labeled the axes by M,,,,, (which is proportional to u) and M; we 

have chosen the latter variable rather than M(0) in order to be able to include the 

Reissner-Nordstrom solutions. The line CA is given by M = Mmo,, while the line 

BC is determined by Eq. (4.17). The nonsingular monopole solutions lie along the 

line CA, with the critical solution at point A. In the region above and to the left 
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of this line, but below the line ABC, are the solutions with black holes inside non- 

trivial monopole configurations. Reissner-Nordstrom solutions occur everywhere 

above the line M = MC,;*. These two regions overlap to the left of BC; in this 

portion of the diagram, there are two distinct solutions with the same values for 

M and M,,,,,. Finally, since we are excluding solutions with naked singularities, 

there are no solutions in the region to the right of OA with M < Mc,eit. 

5. Discussion 

We have seen that a variety of black hole solutions may be associated with 

the magnetic monopoles of spontaneously broken gauge theories. The Reissner- 

Nordstrom solutions with Abelian magnetic charge have long been known; these 

need only a trivial modification to accomodate the Higgs field. A notable feature 

of these is that they require a noneero minimum mass for any given magnetic 

charge. The new class of solutions we have found can have any mass down to 

that of the monopole, while the mass within the horizon can be arbitrarily small. 

Nevertheless, the black hole certainly carries unit topological charge, since the 

Higgs field is topologically nontrivial on the horizon. Whether or not it contains 

unit magnetic charge is somewhat less clearcut, since the horizon lies in a region 

where the asymptotic symmetry-breaking vacuum has not yet been established and 

where the definition of the electromagnetic field strength is ambiguous. 

It is interesting to consider the evolution of these solutions as the system moves 

in the M-M,,, plane. Since ‘u is a constant of nature (although one might per- 

haps envision a time-dependent v in a cosmological context), this motion must be 

along vertical lines in the phase diagram of Fig. 3. Accretion of incident external 

particles would increase M and move the system upward. Downward motion could 

arise spontaneously through Hawking radiation. In particular, a pure Reissner- 
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Nordstrom solution has a Hawking temperature’l” 

T=1 JM~ - Mu, 

2xG (M + $=@2 
(5.1) 

As this black hole radiates it loses mass and increases its temperature, thus accel- 

erating the mass loss, until it reaches a maximum temperature 

T 
2 

maz = 3&(4x)3/2 
IMP (5.2) 

when M = (2/Jj)M,,;t. From this point, T rapidly falls, reaching zero when 

M = Mcrii. In the usual analysis, the critical solution is thus the stable asymptotic 

endpoint of the Hawking process, unless the black hole has managed to discharge its 

magnetic charge , ““. by choosing e small enough this can be suppressed. However, 

our results suggest that if v < ucI this may not be the whole story. For the solutions 

we found in section 4, corresponding to black holes inside monopoles, the radius of 

the horizon can be easily shown, using (4.17), to be larger than the horizon radius 

for the Reissner-Nordstrom solution of the same mass. Classically, since the area of 

the horizon cannot decrease, this suggests that the Reissner-Nordstrom solutions 

are unstable, possibly decaying to our solutions. This can indeed be shown by a 

perturbation analysis around the Reissner-Nordstrom solutions!“’ There is thus 

the possibility of a transition from the pure Reissner-Nordstrom solution to one in 

which the horizon lies within the monopole core. Once this transition has occured, 

there is no longer any obstacle to the complete evaporation of the horizon. These 

possibilities await further exploration. 
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APPENDIX A 

If M(0) = 0, any minimum of the functional 

m 

M = 4x 
J 

d~r~e-~(~)(K + U) + CAM 

0 

gives a nonsingular solution of the field equations. Here 

(AlI 

Q) 

P(r) = 
J 

dr ~TGTK (A21 
7 

while K and U are the gradient and potential terms given by Eqs. (2.11) and 

(2.12). We have seen that for v > v,, - Mp there are no nonsingular solutions, 

and hence no configuration which minimizes M. Since M is bounded from below 

(see Eq. (2.21)), this implies that there must be a sequence of configurations of 

decreasing energy which does not converge on a limiting nonsingular configuration. 

In this appendix we will display such a sequence. 

M differs from the flat space energy functional by containing the factor of e-‘. 

Because of this factor, a rapid variation of the fields u and h about some value 

P = R leads to a suppression of the integrand in the region r < R. This suggests 

that we consider configurations of the form 

0, r>R+$ 

u(r) = f”(r), 1~ -RI < A (A3) 

1, T<R-+ 

1, T>R++ 

h(r) = fh(r), b. - RJ < A (A4) 

0, T<R-$ 

where f,,(r) and fh(r) are smooth functions interpolating between the small T and 

large r values of the fields, and the limit A + 0 will eventually be taken. The 
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large distance values u = 0, h = 1 are chosen to minimize the potential term U; as 

will become evident shortly, the precise choice of the short distance values has no 

effect on the final result. For configurations of this form, K vanishes everywhere 

except in the transition region IP - RI < A, where it is proportional to 1/A2. It 

follows that P(T) = 0 for r > R + A/2 and is proportional to l/A for P < R-A/2. 

Hence, the entire contribution to M from the interior region is suppressed by a 

factor of the form e-const./A. The contribution from the exterior region, which 

is due entirely to U = 1/(2ezr4), is simply 21r/(e2(R + A/2)). In the transition 

region, the contribution from U is clearly of order A, while that from K can be 

estimated by writing r2 = r(R + O(A)) and noting that the leading part of the 

integrand is then a total derivative. This gives 

M=$+ ..E+... (A5) 

where the terms represented by dots are suppressed either exponentially or by 

powers of A as A -P 0. Minimizing with respect to R gives R = ,,/m + . 

and M = Mcyit + .‘.. As A tends to 0, M approaches the critical Reissner- 

Nordstrom mass MC?;*, but the limiting configuration, with A = 0, is singular at 

7 = R and thus is not an acceptable solution of the field equations. 

APPENDIXB 

In this appendix we derive some inequalities which apply to solutions with 

horizons which are not necessarily Reissner-Nordstrom outside the horizon. In 

particular, these apply to the solutions, considered in Sec. 4, which described black 

holes inside monopoles. We assume that for all r 1 r~ the matter fields u and h are 

nonsingular and take values between 0 and 1, that u is monotonically decreasing, 

and that h is monotonically increasing. 

We first derive bounds on the mass outside the horizon. The first step is to 

note that, after eliminating B with the aid of Eq. (2.15), Eqs. (2.17)and (2.18)for 
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the matter fields can be written as 

u’ ’ 
0 

.e2P2 au 8xGrKu’ 

2 =--- 2 au A 

u(u2 - 1) 8~GrKu’ 
= 

P2 
+ e2uh2v2 - 

A 

(‘31) 

r2h’ ’ (4 t-2 au 8rGr3Kh’ = -- - 
A d ah A 

= 2hu2 + ;g - 
8irGr3Kh’ 

032) 

A 

(For brevity, we have written V for the H&s potential $u4(h2 - 1)2.) Integrating 

the first of these, and recalling that I’ = l/A(r~) = 0, we get 

m 

J 1 
dr e2v2uh2 _ %d’rKu’ 

A 1 J = m dr 41 -u2) T2 (B3) 

m m 

We now integrate Eq. (2.16) to obtain the expression 

M - M(ra) = 47r 7 drr2 (;+U) (B4) 

for the mass outside the horizon. Integrating by parts the U” and h” terms in K 

and using the field equations (Bl) and (B2), we obtain 

co 

M- M(rrr) =47r 
1 - 214 
2e2r2 + r2v + TV; 

aV B?rGrKh’ 
--= + A 

VH (B5) 

-u uh2v2 - 
8xGrKu’ 

SA >I 
Since U(T) < u(r~) G U* for T > ra, we have, using Eq. (B3), 

co 

/ ( 
dr u uhz,,z _ 8aGrKu’ e2A ) 5 u* Tdr (uh2vz - ‘,,,,,) 

Iri 7H 

5 ua2 J Oodr (I- u2) 
ev 

-If 

w 
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Substitution of this into Eq. (B5)leads to 

00 

M - M(rg) 2 4a 1 dr [ l-u*-2u*2(1-u2) 
2e2r2 

IFi 1 m (B7) 

24~ J dr 
1 - 2u*s 

2&2 
VII 

and hence 

M-M(r=)>--- 2x (1 - 28) 
e2tg PI 

To get an upper bound on M - M(ra), we start with the identity 

m m 
d 

dr $-3U) = 
a 3 ,au au 

?U + T&T~U) + r u z + r3h’% 1 W I” rli 
The left hand side gives only a surface term at I = PH. (The term at r = cc 

vanishes.) On the right hand side, the last two terms can be rewritten with the 

aid of the field equations (Bl) and (B2). After some algebra and an integration by 

parts this gives 

00 
I drr2U = -I.&U(V) 

rri 

16rGr4K2 
+ A +2r3K ; +- 

0 

’ 2ru’u” 

e2A 

+ rv2h’(r2h’)’ 

A 1 
= -&U(ra) 

+ 
(1 -u2)’ -2r2V- 16mGr4K2 -2r3K 

ew A 1 
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Inserting this into Eq. (B4) and dropping positive terms, we obtain 

M - M(rg) 54~ { -&U(rB) +IdT [g + (I ;$‘2]} WI) 

We now need a bound on the u” term. To obtain this we multipiy Eq. (Bl) by u 

and integrate from the horizon to infinity to obtain 

/dT; = /m& [u2(1;u2) _ &,2,&2 + 8TG,uu’] 

Hence, 

IH ?ti 
m 

I 
J 

dr u2(1 - U2) 

T2 
TJf 

M - M(P8) 5 4x 

{ 

-T;U(T~ .) + /mdr (le;L4) 

?H 

Dropping the U* in the integrand gives the inr _ :quality 

M - M(w) 5 $-(I + 2~‘~ - ut4) 

where U* = u(ra). The inequalities (B8) and (B14) can be combined as 

-=(1-2u’~)<M-M(rg)S 2?r 
&H 

-(l + 2U*2 - C4) 
e2rE 

(BW 

0313) 

(B14) 

(B15) 

As discussed in text, when the mass is large enough so that the inequalities 

(4.7) are no longer respected, we have Reissner-Nordstrom solutions. In this case 

U* = 0 and the inequalities (B15) simply say that the mass outside the horizon 

is given by 2x/e%=. For the type of solutions discussed in section 4, for which 

we have a horizon, but for which the exterior region is not Reissner-Nordstrom, 
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these inequalities can be useful. There are bounds we can put on the masses and 

horizon sizes of such solutions. From Eqs. (2.12) and (2.24) we have, since (l/A) 

is positive, 

T& 2 tE(1 - ,12)2 

With 2GM(ra) = r~, the left hand side of inequality (B15) leads to 

M2 2 &I - 2u.2) 

(W 

W7) 

and 

GM-/v;<&GM+/w 

w3) 

The right hand side of (B15) does not constrain ra unless M2 2 &(~+~u’~--EL*~), 

in which case we get 

rg<GM- G2M2- q( 1 + 2& - u’4) W9) 

or 

~H>GM$ G2M2- ?(I + 2u*2 - tP4) PW 

Once we specify the value of u at the horizon, these inequalities constrain the 

values of masses and horizon sizes. For example, for the critical solutions with ZL* 

given by Eq. (2.13), inequality (B16) gives 

e”v”& 5 1 - - ; ( 1 - My) (1 -G) P’Jl) 

forX>e’. ForM’<&, this is a refinement of inequality (4.7) in the text. For 

2s 



X < e’, we get 

M2 < 4x(e2 + X - 2Xezv2rk) 
- 

Ge2(e2 - A) 

which requires that 

AtA < I- 1 I- - x 
a- 2 ( > e2 

632‘4 

(B23) 

This is again a refinement of (4.7). 
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FIGURE CAPTIONS 

1) Plots of (a) U(F), (b) h(r), and (c) l/A(r) for X/e2 = 1.0 and ,u = 8rGv2 

equal to 0.1 (solid line), 1.0 (dashed-dotted line), 2.0 (dotted line), and 2.35 

(dashed line). 

2) Plot of u(v) as a function of I(r), the physical distance from t,he origin, for 

p = 87rGv’ equal to 0.1 (solid line), 1.0 (dashed-dotted line), 2.0 (dotted 

line), and 2.35 (dashed line). 

3) The phase diagram of solutions for the simplified monopole model discussed 

in the text. “R-N” refers to a Reissner-Nordstrom solution with a horizon, 

while “Man” refers to the solutions with a black hole inside a nontrivial 

monopole configuration. 
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